Monthly Archives :

October 2019

After the rain — How to get more forage from your pasture

2592 1936 Sectormentor for Soils

This is a guest post by Niels Corfield, soil health, agroforestry and whole farm planning advisor, researcher and advocate. You can find more articles from him on medium.

What can we do to capitalise on rain when it comes; so we can get more forage and improve the health of our pasture and animals? I’m going to present some observations from pastures around the UK. Along with what I feel are the key opportunities available to graziers (in the West at least).

Key Observations
Below are 2 pics of the same spot in a permanent pasture. What is a fairly typical situation. What can we glean from them?

Firstly, and most importantly, there are clear bare patches. There could be as much as 50% bare soil, in this case.

These images are following a grazing event (in this case rotational grazing). This type of situation may well be similar to what is revealed after a hay cut, although in this case a low “sward density” maybe a more representative way to quantify the amount of bare soil, since much of the soil after a hay cut will be covered with residues (which is good but is only short term) and otherwise covered by leaves, though still open at the base — leaving space (bare soil) between the plants.

Bare patches in the pasture (as in all soils) are a weakness since it’s a place where water and carbon are lost, and soil health is declining. But they may also be an opportunity.

Ideally, there is no bare soil in pasture, it being covered by living plants, a tight/dense sward, with a closed canopy.

See here for details on recording bare soil in pasture.

Ideally these areas are covered with residues (litter or mulch). In a grazing situation, this would be the product of high stock density grazing management, where low utilisation rates leave residuals that are trampled on to the soil surface, see brief discussion on this topic in earlier article here.

A more ideal solution to this is to have a dense sward with leaves and turf tight enough that it forms a closed canopy that covers the soil surface.

We’ll focus on this second approach and see about turning this problem into a solution.

Selecting Options

Establishing seed into existing leys or pasture is notoriously tricky. In this piece I will not focus on the nuance of this process. Except to say that when selecting methods available to you, whether through contract work or doing it your selves, those options that score higher on the soil health principles should be preferred, see above. With obviously the plough down reseeding scoring pretty low.

A few of the standard methods are outlined below:

Ensuring Good Establishment

Broadcast Overseeding
In this case, where we have a high degree of bare soil, broadcasting is an option that is highly indicated. Basically, spinning-on a mixture of seed. Though slot seeding is still a good option, see below. Where considering broadcasting, there are a few things to bear in mind to get a good take:

1.Improve seed-to-soil contact by rolling or trampling
Cambridge rollers, cultipackers etc are suitable for this purpose as well as, grazing livestock at high stock densities — 100,000+kg live weight/ha, for a day or less (aka mob grazing) after broadcasting. Both these practices could be combined with mulching, or bale grazing, see below.

2.Retain soil moisture by covering soil
Even when there has been a lot of rain, it’s still a good idea to maintain that soil moisture, to improve the take.
Do this by spreading loose materials like straw, woodchip etc. To mulch the soil and keep the soil surface damp.
See pics below for illustration. And further discussion in mob grazing section at foot of earlier piece here.

3.Offer fodders in the field (while still moving the animals)
There’s a few different ways to cut this. But basically keeping the animals in the field and keeping them moving, ideally in tight groups, will aid the process of seed establishment. Different options include: bale grazing and green hay strewing.

Both methods mean being able to keep the animals in the field (when there’s insufficient forage left) and, particularly when combined with high stock density grazing they are ways to:

– tread-in seed — see point 1, above
– dung and urine densely — seeds will grow under pats
– provide some residues to cover seeds and retain moisture
– introduce perennial pasture seeds back into the pasture

In fact these solutions provide most of the functions required to achieve good take: seed contact, covered soil, seeds.
While also keeping animals out in the field, removing the need for muck handling in the yard. And providing better conditions for animals, than indoors.

Legume seedlings germinating in manure pile

Slot Seeding
Another option for establishing seed into pasture, perhaps where bare soil is less prevalent, and the appropriate kit is available, is slot seeding.
Drilling, rather than broadcasting means the seed will have the better seed-to-soil contact. It will also be placed below the surface where the soil moisture will be higher, at least nominally.
It is certainly more frugal with seed.
Perhaps the main drawback with this option, is that in these very dry conditions it may be difficult to penetrate the soil surface.
Either way, where the kit is available, this method is perhaps the most robust and economic — when it comes to seed, at least.

What Seeds to Sow

Making Initial Selections
We’ve talked about establishment options. So what’s the best seed to actually sow in the pasture? Given that we have run out of forage (due to a lack of regrowth) and we have a degree of dormancy in our pastures.
What might our selection criteria be for selecting plant species:

  1. Fast growth — forage available this season
  2. Bulk — lot’s of dry matter to make up for the short-fall
  3. Nutritious — ensuring sufficient animal performance

So, what type of plants meet these criteria?
Annuals, diverse mixes of them.

Why Annuals, What’s Wrong with Pasture Grasses etc?
Well in a word growth rate — annuals need to complete their lifecycle in a year or less (so it’s a sprint race for them), in that time they can grow tall and produce a lot of bulk and their seed is cheap. You might even have some in the shed right now.
In this case particularly, as a way to get an early bite, and to beat the season, they are highly indicated.
Coupled with that the option to use warm season species (those adapted for hot dry conditions) they’re doubly indicated.

How to get the best return on investment? Sow mixes of annuals.

Compared to this pasture species are perennials, they are: generally slower growing, slower to establish and typically much smaller plants (adapted for multiple grazing events in one season). This is all related to their life cycle of multiple year.
It’s not to say that they can’t be included in a seed mix for sowing now, but with annuals. There’s also the small consideration of seed cost. And grass seeds are on the upper end, needing to be purchased from specialists seed merchants. Another indication for hay strewing or bale grazing.

Principles of Diversity & Soil Health
One of the most important of the soil health principles is diversity. The key insight being that a diversity of plants feeds a diversity of organisms. This diversity is regarded as the key to soil organic matter formation and to a balanced diet for plants, as each organism has it’s own nutrient mineralising specialisms. Ensuring a better diet for animals.
Diversity is also correlated with increased yield.
This is where cover crops and pasture species, being mixes, really excel, compared to crops which have their own restrictions, tending to monocrops.
Once you add-in annuals into the mix, alongside perennials, you really can push the diversity lever up to 11!
Experience has also shown pasture cropping examples, like this, that have resulted in step-changes in soil aggregation, with all those extra living roots pumping-out exudates into the pasture.

Diversity in Action
When it comes to diversity, how much is enough? And what should you choose? Given there’s so much choice.
Thankfully there’s some simple rules, we have been offered from US practitioners, that we can follow:

  1. 8x species (or more) is a sweet spot, for soil health benefits, from
  2. 3 out of 4 functional groups

Functional Groups
What are these functional groups, and why are they important?
Well they give us some pointers as well as narrowing-down the options somewhat. They are:

  • Warm season grasses
  • Cool season grasses
  • Warm season broadleaves
  • Cool season broadleaves

Perhaps this seems like an odd list. And why choose warm season plants for instance?
Well, the first reason is they can actually grow really fast. Due to the fact they photosynthesise using different frequencies of light, more prevalent in strong sun situations. This is why maize is such a high yielding crop, growing to 7′ in a season. These plants are also known as C4 plants.
The other reason we’d select them, in this particular case is due to the fact that we are actually in a warm season, right now. And our pastures (which are all cool season species) have gone dormant or “burned off” because of the extended dry spell. Warm season plants are adapted for these conditions, and have the ability to grow through the “summer slump”. Though establishment is certainly still an issue.

The Specifics
Below is a table of the main species of cover crops.
Remember select 8 or more species from 3 or more of the functional groups.

There’s nothing to stop you using farm-saved seed: peas, oats, wheats etc.
The other option is to source bird seed mixes and feed cereals locally/in bulk. This will certainly bring down the cost, compared to a seed merchant.
In fact there’s a real advantage to doing this as it will allow you to up the seeding rate. If there’s one golden rule with cover crop establishment it’s:

Don’t skimp on seed, too little is as bad as no seed at all.

Putting It All Together

So what might a successful oversowing of annual-based forage mixes look like?
Some examples below. And a few new bits of jargon, all of which are relevant to this situation. Although the text mostly refers to a cropping situation, they are equally suited to pasture, when due diligence is followed around establishment. It’s clear to see that these mixes have the potential to produce large volumes of diverse (quality) forage in a short space of time.
Pasture stitching is the name given to drilling forage crops into pasture.

Final Thoughts

I hope that this piece offers some practical suggestions of what to do in droughted, burnt-off pasture or more generally in tired pasture, when you want to get a forage boost, or provide forage in the off-season, while improving soil health, and with it animal health — through better quality (diverse) forage.

Take Home Messages

  1. Use the soil health principles to inform your decisions and to direct your observations in pasture
  2. Cover bare soil by litter and living plants
  3. Choose rapid growing annual species for instant results
  4. Diverse plantings are preferred, where planting date is appropriate
  5. Keep costs down by: using your own seed/creative sourcing
  6. Experiment, try some different: mixes, seed rates, establishment methods

And for those that want to find out more, or discuss this in more detail please get in touch or consider joining me on one of my soils courses. If you have any thoughts or questions, get in touch: info@nielscorfield.com

Soil health courses & info
https://www.facebook.com/pg/nielscorfieldland/events/

Further Reading
Part 2 — Realising the Promise of Soil Health in Organic Horticulture
https://medium.com/@nielscorfield_90202/no-till-for-growers-realising-the-promise-of-soil-health-in-organic-horticulture-646fd553257

Don’t think you’ve got time to go out and dig holes? Think differently!

559 397 Sectormentor for Soils

What does the future hold for farming? Well, the truth is, we don’t have a crystal hoof! But, there is one way to make our farming enterprises resilient, through the wettest of winters and driest of summers. A way of reducing inputs, increasing biodiversity and building a healthy planet. Farming with a focus on regenerating our soils.

We all need to start somewhere on this journey. What does your soil structure look like? Is it compacted? Is your soil at risk of erosion? Is it alive with worms, microbes and fungi? These are the questions we should be asking ourselves as farmers today, and they can be answered by getting out into your fields and observing for yourself.

Whatever type of farm you are, whatever your location, you can benefit from soil monitoring. It is the basis for knowing if your soil is healthy or not and if it supports healthy crops and animals. Without knowing how healthy your soil is, how can you improve it?

Lab tests are only part of the picture, numbers on a page. Soil health analysis is visual, connecting you to your land, monitoring it’s pulse. It is your guide.

But what will you get from soil monitoring? (Apart from muddy fingernails!)

From your first set of tests you create a baseline of your soil health. Straight away you can draw insights from comparing soil test results on fields under different land use. But really the magic happens when you come back to the same sample spots and do these tests again, and again, and again.

Record observations, photograph what you find and save the GPS locations of your sample sites using the Sectormentor app. Next time you can return to the exact same spot on the map and compare it with the last time you were there. Worms love the camera!

Then you will learn if your cover crop roots are improving soil structure, or if your new grazing system is stimulating microbial life and so on. All this information is available to you through simple, low cost tests, and acts as your guide for how to improve your soil health.

Don’t think you’ve got time to go out and dig holes? Think differently!

To be successful at soil monitoring you need to build it into your routine. The first time is always the hardest and perhaps you have another more pressing task (like tidying the farm office!) BUT once you get going, you’ll be hooked.

Day-to-day farming activities you can do when you’re soil monitoring:

Checking livestock
Once you’ve made sure they are all there, no one has jumped the fence and the water trough isn’t overflowing why not fetch your spade, dig a hole and count earthworms? Manure from the beastys feeds dung beetles and worms, so you should find lots of activity.

Crop walking
Heading out to see what growth stage you’re at? This is the time to assess how well your soil is supporting your crops. Is there an area that doesn’t look so good? Perhaps there is a compaction issue, you’ll only know once you get the spade in and do a visual evaluation of soil structure.

Fencing
Need some light relief from moving electric wires or post bashing? It’s likely you’re in fields grazed by our furry and/or feathery friends. Check out the diversity of their forage by throwing a quadrat around and see how what’s growing affects soil biology by doing a slake score.

Taking the dog(s) for a W-A-L-K
We have it on good authority that dogs love to go soil testing, we’ve seen it with our own eyes. They will get a good leg stretch and tail wag as you tour the fields with your spade. They might even carry your quadrat for you.

..and remember, digging one hole is better than digging none. Just dig it!

 

Ready to get started soil monitoring? Check out Sectormentor for Soils – a handy smartphone app to record soil test results and photos in field and online account to analyse your observations.

How to store water in your soil and prevent erosion

4032 3024 Sectormentor for Soils

As the weather in the Northern Hemisphere gets rainier going into the Autumn months, the question of our soils’ relationship with water springs to mind. We know that healthy soils absorb much more water than unhealthy soils, and that healthy soil is less likely to degrade into runoff, but what’s the science behind this?

We’ve done some reading around the literature on this subject, to learn how to keep our soils in top shape with regenerative agriculture, and to build a greater resilience to climate extremes like flooding and droughts. 

First, leaving soils uncultivated has been shown to increase the structure of macroaggregates within the soil – many studies show an improved macroaggregate stability in soils under no-till compared with ploughed soil (1,2). This is because the net of undisturbed roots and mycorrhizal hyphae entangle smaller aggregates together, reducing the likelihood of soil runoff during heavy rain, and increasing porosity. You can easily assess the macroaggregate stability of your soil with the VESS test or the Slake test (and the results can then be recorded within our Sectormentor for Soils app!). Hopefully, having an awareness of how your soil scores on these tests will help you to understand how to improve your soil health! 

A long-term study found that conservation agriculture plots retained ⅓ more water under both wind and water erosion compared with conventionally tilled plots (3). Reducing wind and water runoff is significant – we know for example that the devastating US ‘Dust Bowl’ in the 1930s was caused by intensive cultivation, and hugely impacted food security at the time – it’s estimated that 300 million tonnes of topsoil was swept up by the wind, destroying crops and killing livestock (4). With extreme weather events increasing due to climate change, building soil resilience is of utmost importance.

In the same vein, agricultural runoff causes massive ecological damage, and is a major source of nonpoint source pollution in water systems – with runoff likely containing fertilisers, pesticides, nutrients and topsoil. A study comparing four streams with catchments from land under different management, found streams feeding from land under conservation agriculture had a higher diversity of invertebrates and more ‘clean water’ species than streams under tilled land, which was attributed to improved soil structure reducing agricultural runoff (5). The reduced topsoil runoff into nearby rivers and streams also reduces sedimentation, which increases the river’s capacity, as well as the clarity of the water – allowing sunlight to benefit the wildlife and photosynthesis in aquatic plants. Rivers with high sedimentation also absorb more heat from the sun, causing local warming which potentially causes further damage (6). 

Soil erosion in the UK is clearly visible from space. Credit: NEODAAS/University of Dundee

We loved seeing the rainfall simulator at Groundswell this year – it really helped us to visualise the ability of healthy soil to absorb rain! You can watch a video of a rainfall simulator in action here.

Rainfall simulator in action at the 2019 Groundswell show – the bottles on the ground show the water that filtered through the soil in each plot, while the hanging bottles show the ‘runoff’ water.

So, to wrap up, healthy soils absorb and hold more water than degraded soils, which helps to reduce flooding, aquatic pollution, and resistance to drought conditions and wind erosion! Keeping your soil optimally protected involves minimal disturbance, continuous cover with mulch and living roots, and root diversity (from crop diversity) allows for increased microbial populations which help to aggregate soil. All of these come under the soil health principles.

We developed Sectormentor for Soils as a simple solution to help farmers monitor their soil health progression – seeing your soil health improve over time helps you to understand which farming methods are working for you, and hopefully give you an incentive to stay on a regenerative journey!

Learn more about making your soil rain-ready here, and learn about monitoring the impacts of water run-off here

Paper references:

  1. Congreves, K.A., Hayes, A., Verhallen, E.A., Van Erd, L.L. 2015. Long-term impact of tillage and crop rotation on soil health at four temperate agroecosystems. Soil and Tillage Research. 152: 17–28.
  2.  Parihar, C.M. Yadav, M.R., Jat, S.L., Singh, A.K., Kumar, B., Pradhan, S., Chakraborty, D., Jat, M.L., Jat, R.K., Saharawat, Y.S., Yadav, O.P. 2016. Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo-Gangetic Plains. Soil and Tillage Research. 161: 116–128 
  3. Van Pelt, R.S., Hushmurodov, S.X., Baumhardt, R.L., Chappell, A., Nearing, M.A., Polyakov, V.O., Strack, J. 2017. The reduction of partitioned wind and water erosion by conservation agriculture. CATENA. 148: 160–167
  4. Baveye, P.C., Rangel, D., Jacobsen, A. R., Laba, M., Darnault, C., Otten, W., Radulowich, R., Camargo, F.A.O. 2011. From dust bowl to dust bowl: soils still a frontier of science. Soil Science Society of America Journal. 75: 6
  5. Barton, D.R., Farmer, M.E.D. 1997. The effects of conservation tillage practices on benthic invertebrate communities in headwater streams in southwestern Ontario, Canada. Environmental Pollution. 96: 207-215
  6.  Lal, R., Reicosky, D.C. & Hanson, J.D. 2007. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil and Tillage Research. 93:1–12